Extending the RETE Algorithm for Event Management

Bruno Berstel
ILOG
9, rue de Verdun
94253 Gentilly Cedex, France
berstel @ilog.fr

Abstract

A growing number of industrial applications use rule-
based programming. Frequently, the implementation of the
inference engine embedded in these applications is based
on the RETE algorithm. Some applications supervise a flow
of events in which time, through the occurrence dates of the
events, plays an important role. These applications need to
be able to recognize patterns involving events. However the
RETE algorithm does not provide support for the expression
of time-sensitive patterns. This paper proposes an extension
of RETE through the concepts of time-stamped events and
temporal constraints between events. This allows applica-
tions to write rules that process both facts and events.

1. Introduction

Incremental pattern matching algorithms have been stud-
ied for some time now. The two most widely known are
RETE [4] and TREAT [9]; the Gator algorithm [6] is de-
rived from them. However, these algorithms do not specif-
ically consider time and thus offer no time-related con-
structs.

On-line recognition of temporal patterns has been for-
malized under the term of chronicle recognition by Dous-
son [2, 5, 1]. Several chronicle recognition algorithms have
been published [7, 2, 3]. Unlike the work described in this
paper, these algorithms and their implementations do not
aim at providing advanced pattern matching features.

In this paper we propose an extension of the RETE algo-
rithm to incrementally recognize patterns including events
with temporal constraints, while still benefiting of RETE’s
pattern matching efficiency.

In Section 2 we give an example of a rule involving facts
and events. Section 3 then introduces the concepts we need
to add to the standard RETE algorithm. Sections 4 and 5
present our extension of RETE, and illustrate it using the
example rule. Finally Section 6 concludes and underlines

the benefits of integrating event management in a rule en-
gine.

2. Example

We start with an example of a rule matching both facts
and events. The example models the following situation.
A supervisor receives events from equipments that may be
off-line, on-line, or active. The events are of three types:
alarms, related to an equipment; confirmations of alarms,
which mean that the reason that triggered the alarm still
holds; and cancellations of alarms. The supervisor main-
tains internal representations of the monitored equipments
and of the events, as objects (e.g. instances of Java classes).
They are processed according to rules.

Our example is one of these processing rules. It is ex-
pressed below in the ILOG JRules language, a Java-like
variant of the OPS5 language. The rule monitors a sequence
of alarms occurring on an active equipment, made of an ini-
tial alarm followed within 5 clock ticks with a confirmation
signal.

rule AlarmConfirmation {

when {
?e: Equipment (state == ACTIVE) ;
?a: event Alarm(egpt == ?e);
?c: event Confirmation(alarm == ?a;
?this after[1,5] ?a);
} then {

assert new ConfirmedAlarm(?a, ?c) ;

}
};

The logic expressed in this rule is: for all facts of the
Equipment class with a state field having the ACTIVE
value; for all events of the Alarm class with an egpt field
matching an Equipment which satisfies the previous con-
dition; for all events of the Confirmation class, related to
an Alarm matched by the second condition, and occurring

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Ninth International' Symposium on Temporal Representation and Reasoning (TIME'02)

1530-1311/02 $17.00 © 2002 IEEE www.manar

between 1 and 5 clock ticks after this alarm; create an in-
stance of the ConfirmedAlarm class and assert it as a new
fact.

3. Introducing Time and Events

The example above uses some concepts which are new
to non-temporal rule systems: time, events as opposed to
facts, time constraints.

In order for our rule engine to support temporal reason-
ing, we equip it with a clock. The operations required on the
engine clock are: a function returning the current time, and
a function incrementing the current time by one tick. As
the choice of these operations indicates, we choose a time
model based on a discrete succession of instants [8].

In the regular RETE algorithm the facts bear no temporal
information. In particular, our extension, in the absence of
events, is strictly equivalent to classical RETE. Here we in-
troduce the concept of event. An event can be stored in the
engine memory just like a fact, and the engine maintains a
time-stamp for each event. An event in our model has no
duration (events that take time would be represented by a
start event and an end event). In the simplest case, the time-
stamp of an event is the value of the engine clock when the
event is asserted.

Since there is no difference in structure between a fact
and an event, what makes the engine distinguish between
them is the way they are asserted. The facts are the objects
asserted with the assert primitive; they hold true from the
moment they are asserted, until the moment they are ex-
plicitely retracted, if any. On the opposite, the events are the
objects asserted with the assert-event primitive; they
hold from their occurrence dates, until they are explicitely
or automatically retracted. The conditions in rules explicitly
indicate whether they match facts or events.

In order to specity temporal constraints between events,
we use before and after predicates. Temporal con-
straints can be combined together and with non-temporal
tests, using disjunction, conjunction, and negation opera-
tors.

Of course, temporal constraints can only be specified be-
tween events. Note that there is always a temporal con-
straint between two events in a rule. If none is explicitely
specified, it means that the events can occur in any order,
which corresponds to a constraint with two infinite bounds.

4. Extending RETE for Incremental Temporal
Pattern Matching

In a RETE network, the join nodes contain the tests from
the rule conditions which control whether objects will be
matched together. For instance, the RETE network repre-

senting the example rule includes a join node matching to-
gether Alarm and Confirmation events, and containing
the ?c.alarm == ?aand ?c after[1,5] ?a tests.

When a new alarm is asserted, it is submitted to the join
node, which evaluates its tests on the alarm against each
of the already asserted confirmations. Symmetrically, when
a new confirmation is asserted, the join node evaluates the
tests on the confirmation against each of the already asserted
alarms. To achieve this, each parent node maintains a stor-
age of the objects it submits to the join node, so that the join
node will be able to evaluate tests against them when it is
submitted a new object by the other parent node.

When time is not involved, the parent nodes store indef-
initely all the objects they submit to the join node. On the
other hand, when a condition includes temporal constraints,
this gives a limit in time to its satisfiability. This limit can
be used to bound the time during which objects are stored
in parent nodes of a join node.

In our example, the join node contains the constraint that
“the confirmation must occur between 1 and 5 ticks after
the alarm”. Assume that an alarm occurred at date 10: after
date 15, it will be impossible to match this alarm with any
confirmation, because the temporal constraint will never be
satisfied. This means that the parent node needs only store
the alarm until date 15, and can then release it.

In our extension of the RETE algorithm, we implement
this by adding a dialog between the join node and its parent
nodes:

e When an event is submitted to a join node by a parent
node, the join node computes the event’s expiry date
with respect to the temporal constraints it stores. This
date is computed from the time-stamp of the event, and
from the bounds in the temporal constraints held by the
join node.

o If the expiry date of the event has not yet been reached,
the parent node keeps it at least until this date, so that
the join node may match it against new events that it
may be submitted. On the contrary, if the event has
expired, there is no need for the parent node to store it.
In both cases, the join node informs its parent node of
whether the event should be kept or not.

o In the case where the expiry date of the event is in the
future, the join node posts a request to be notified at
that date. When it is notified, the parent node will no
longer need storing the event. The join node then in-
forms its parent node, which can thus remove the event
from its storage.

Note that the computation of the event expiry date, as
well as the dialog between the join node and its parent
nodes, always occur. They do not depend on whether the
event could be matched by the join node or not. In our ex-
ample, confirmations are never stored in the parent node, yet

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Ninth International' Symposium on Temporal Representation and Reasoning (TIME'02)

1530-1311/02 $17.00 © 2002 IEEE www.manar

they can match other facts and events. This is because the
matching trials are performed on data previously asserted,
whereas the expiry date computation addresses future asser-
tions.

5. Matching Facts With Events

We stated in Section 3 that facts hold true from the mo-
ment they are asserted. This is applicable as far as the recog-
nition of facts by conditions is concerned, but must be re-
stricted when considering matching a fact with an event.
The exact principle that we follow to trigger rules on a set
of facts and events is:

In a rule matching facts and events, all fact con-
ditions must be satisfied as soon as the first event
condition has been satisfied, and until the last one
has been satisfied.

This principle expresses that from the viewpoint of a
given event, only the facts that were asserted before the
event hold true. It forbids that facts match events that were
asserted beforehand.

The rule engine must enforce this principle when match-
ing a fact with an event, as illustrated below. On the other
hand the principle is crucial to the engine, as relieves it from
having to keep events indefinitely in join node parents, only
to be matched with future facts.

To illustrate that the principle is needed, let us consider
the execution of our example on the following scenario. An
alarm occurs (at date 30, say) on an equipment which state
is ‘on-line’. Because the equipment is not ‘active’, the join
node containing the egqpt == ?e test will not consider it
for a match with the alarm. Since the join node contains no
temporal constraint, the alarm will not be stored in its parent
node. As a result, if the equipment becomes active at date
32, it will not be matched with the alarm. This conforms
to our principle, and is the expected behaviour of a RETE-
based system.

Assume now that we extend our example with the fol-
lowing rule:

rule AlarmCancelled {

when {
?a: event Alarm() ;
?c: event Cancellation(alarm == ?a;
?this after[1,4] ?a);
} then {
retract ?a;
}

}:

The join node corresponding to this rule contains the ?¢
after[1,4] ?a constraint. Thus the alarm that occurred
at date 30 will be kept until date 34. When the equipment

is actived at date 32, it becomes candidate to a match by
the AlarmConfirmation rule with the (now stored) alarm.
But the principle states that this match is forbidden, because
the condition on the equipment was not satisfied at date 30,
when the alarm satisfied the second condition. This is what
we want, as it ensures that the semantics of a rule is not
impacted by the presence or absence of another rule.

We implement the principle by ignoring facts in join
nodes where the other parent node sends events.

6. Conclusion

In this paper we presented an extension of the RETE
algorithm to integrate event management in a rule engine.
This extension introduces the concepts of event, and of
temporal constraint between events. It allows rule-based
programs to recognize patterns involving time-independent
facts and time-stamped events.

In addition, by managing the expiry dates of events, this
extension allows the rule engine to automatically retract an
event when it can be deduced from the temporal constrain-
sts expressed in the rules that the event can no longer be
matched. This relieves the rule programmer from the bur-
den of managing the event lifecycle.

The work described in this paper has been implemented
in the ILOG JRules™ product. This product includes a rules
engine whose implementation is based on the RETE algo-
rithm, as well as advanced rule programming tools, such as
business rule languages, a debugger, and an extensible rule
management environment.

References

[1] M.-O. Cordier and C. Dousson. Alarm driven monitoring
based on chronicles. In SafeProcess, 2000.

[2] C. Dousson. Suivi d’évolutions et reconnaissance de chro-
nigues. PhD thesis, Université Paul Sabatier, Toulouse, 1984.

[3] D. Fontaine and N. Ramaux. An approach by graph for the
recognition of temporal scenarios. IEEE Transactions on Sys-
tem, Man and Cybernetics, 1997.

[4] C. Forgy. Rete: A fast match algorithm for the many pat-
tern/many object pattern match problem. Artificial Intelli-
gence, (19):17-37, 1982.

[5] M. Ghallab. On chronicles: Representation, on-line recogni-
tion and learning. In Int’l Conf. on Principles of Knowledge
Representation and Reasoning, 1996.

[6] E.Hanson and M. Hasan. Gator: An optimized discrimination
network for active database rule condition testing. Technical
Report TR93-036, Univ. of Florida, 1993.

[7]1 F. Lévy. Recognising scenarios: a study. In Int’l Workshop
on Principles of Diagnosis, 1994.

[8] D. V. McDermott. A temporal logic for reasoning about pro-
cesses and plans. Cognitive Science, 6:101-155.

[9] D. Miranker. Treat: A better match algorithm for ai produc-
tion systems. In National Conf. on Al, 1987.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Ninth International' Symposium on Temporal Representation and Reasoning (TIME'02)

1530-1311/02 $17.00 © 2002 IEEE www.manar

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

